Category: Featured

Excel to Spotfire: Targeting Missing Values

In Data Science, prior to using any analytics we always face the problem of having missing values. Deciding when to delete cases or fill missing values is totally dependent on the data set and the target problem. A general practice consists on deleting variables and samples with more that 30% of missing values and then use Multiple Imputation techniques to fill the remaining missing values. In Excel, we can use the replace tool or the filter to approach this problem, and even use Visual Basic to code a more customized solution. In Spotfire, we have the advantage of using more advanced methods by accessing R libraries that contain MCMC, Bayesian and Multivariate Algorithms. Spotfire’s integrative tools really make a difference on how to approach the missing values problem: putting together advanced algorithms, amazing visualizations and user interactivity.

Read More